Pressure Conversions

```
100 PSI = 6.9 Bars
250 PSI = 17.25 Bars
600 PSI = 41.4 Bars
5 Bars = 72.5 PSI
10 Bars = 145 PSI
25 Bars = 362.5 PSI
```


Measurement Information

Measures of Pressure

1 Pound Per Square Inch = 144 Pounds Per Square Foot $=0.068$ Atmosphere $=2.042$ Inches of Mercury at $62^{\circ} \mathrm{F}=27.7$ Inches of Water at $62^{\circ} \mathrm{F}=2.31$ Feet of Water at $62^{\circ} \mathrm{F}$.

1 Atmosphere = 30 Inches of Mercury at $62^{\circ} \mathrm{F}=14.7$ Pounds Per Square Inch = 2116.3 Pounds Per Square Foot $=33.95$ Feet of Water at $62^{\circ} \mathrm{F}$.

1 Foot of Water at $62^{\circ} \mathrm{F}=62.355$ Pounds Per Square Foot $=0.433$ Pounds Per Square Inch.
1 Inch of Mercury at $62^{\circ} \mathrm{F}=1.132$ Feet of Water $=13.58$ Inches of Water $=0.491$ Pounds Per Square Inch.
Column of Water 12 Inches High, 1 Inch in Diameter = . 341 Pounds
If temperature is kept constant, the volume of a given mass of gas is inversely proportional to the pressure which is exerted upon it.

Length Conversion Constants

Millimeters x. $039370=$ Inches
Meters x $39.370=$ Inches
Meters $\times 3.2808=$ Feet
Meters $\times 1.09361=$ Yards
Kilometers $\times 3,280.8=$ Feet
Kilometers x $.62137=$ Statute Mile
Kilometers x. $53959=$ Nautical Miles

Inches x $25.4001=$ Millimeters
Inches x $.0254=$ Meters
Feet x $.30480=$ Meters
Yards x $.91440=$ Meters
Feet x $.0003048=$ Kilometers
Statute Miles $\times 1.60935=$ Kilometers
Nautical Miles $\times 1.85325=$ Kilometers

Weight Conversion Constants

Grams x $.03527=$ Ounces (Avd.)
Grams x. $033818=$ Fluid Ounces (Water)
Kilograms $\times 35.27=$ Ounces (Avd.)
Kilograms $\times 2.20462=$ Pounds (Avd.)

Ounces (Avd.) x $28.35=$ Grams
Fluid Ounces (Water) $\times 29.57=$ Grams
Ounces (Avd.) x $02835=$ Kilograms
Pounds (Avd.) x . $45359=$ Kilograms

Circumference of a Circle

Circumference $=2 \pi r=\pi d=3.14159 d$
Area $=\pi r^{2}=\pi \frac{\mathrm{d}^{2}}{4}=.78539 \mathrm{~d}^{2}$

Right Cylinder

$r=$ radius
$h=$ length
Volume $=\pi \cdot r^{2} h$
Surface Area $=2 \pi r(r+h)$
If end planes are parallel but not at 90° to h , the same formulas apply, but a slice at 90° through the cylinder must be used to determine r.

